A study on transitive modal logics
نویسنده
چکیده
The concern of this paper is the study of automated deduction methods for propositional modal logics. We use tableau proof-systems to show that Fitting's translation of the transitive modal logic S4 into T can be constructed in deterministic polynomial time. Moreover, we establish a polynomial bound to the length of branches in both tableau and sequent proof search for the transitive logics S4 and K4. This allows the elimination of periodicity tests when proving S4-validity; moreover, it provides directly a form of \contraction elimination result" in modal sequent calculi, in the sense that the number of contractions needed in a branch of a sequent proof need not exceed a given polynomial function of the endsequent. In order to obtain a complete contraction free fragment of the sequent calculus for S4, Mints's translation of modal formulae into modal clauses is used. Mints's notion of modal clause is also used to provide polynomial translations of S4 and K4 into K, by means of a preliminary (polynomial) rewriting of the input formulae into clausal form. R esum e. Ce papier est une etude de quelques m ethodes de d eduction automatique pour des logiques modales propositionnelles. Nous utilisons des syst emes de preuve par tableaux pour montrer que la traduction de la logique modale S4 en T propos ee par Fitting peut ^ etre construite en temps d eterministe polyn^ omial. En plus, nous etablissons une borne polyn^ omiale sur la longueur des branches au cours de la recherche de preuves pour les logiques transitives S4 and K4. Ceci permet d' eliminer les tests de p eriodicit e quand on prouve la validit e en S4; il constitue aussi une sorte d'\ elimination des contractions" pour les calculs des s equents modaux, dans le sens o u le nombre de contractions n ecessaires sur une branche d'une preuve par s equents n'a pas besoin de d epasser une certaine fonction polyn^ omiale du s equent conclusion. AAn d'obtenir un fragment sans contractions et complet du calcul des s equents pour S4, nous utilisons la mise en forme clausale modale propos ee par Mints. La notion de clause modale de Mints est aussi utilis ee pour construire des traductions polyn^ omiales de S4 et K4 en K, a l'aide d'une r e ecriture pr eliminaire des formules sous forme de clauses.
منابع مشابه
On PSPACE-decidability in Transitive Modal Logics
In this paper we describe a new method, allowing us to prove PSPACE-decidability for transitive modal logics. We apply it to L1 and L2, modal logics of Minkowski spacetime. We also show how to extend this method to some other transitive logics.
متن کاملProducts of ‘transitive’ modal logics without the (abstract) finite model property
It is well known that many two-dimensional products of modal logics with at least one ‘transitive’ (but not ‘symmetric’) component lack the product finite model property. Here we show that products of two ‘transitive’ logics (such as, e.g., K4 ×K4, S4 × S4, Grz×Grz and GL×GL) do not have the (abstract) finite model property either. These are the first known examples of 2D modal product logics w...
متن کاملIncremental Decision Procedures for Modal Logic with Nominals and Eventualities
This thesis contributes to the study of incremental decision procedures for modal logics with nominals and eventualities. Eventualities are constructs that allow to reason about the reflexive-transitive closure of relations. Eventualities are an essential feature of temporal logics and propositional dynamic logic (PDL). Nominals extend modal logics with the possibility to reason about state equ...
متن کاملStable Modal Logics
We develop the theory of stable modal logics, a class of modal logics introduced in [3]. We give several new characterizations of stable modal logics, and show that there are continuum many such. Since some basic modal systems such as K4 and S4 are not stable, for a modal logic L, we introduce the concept of an L-stable extension of L. We prove that there are continuum many S4-stable modal logi...
متن کاملFiltration Safe Operations on Frames
Filtration is a standard tool for establishing the finite model property of modal logics. We consider logics and classes of frames that admit filtration, and identify some operations on them that preserve this property. In particular, the operation of adding the inverse or the transitive closure of a relation is shown to be safe in this sense. These results are then used to prove that every reg...
متن کاملA Resolution-Based Decision Procedure for Extensions of K4
This paper presents a resolution decision procedure for transitive propositional modal logics. The procedure combines the relational translation method with an ordered chaining calculus designed to avoid unnecessary inferences with transitive relations. We show the logics K4, KD4 and S4 can be transformed into a bounded class of well-structured clauses closed under ordered resolution and negati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007